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CHAPTER 2 

TRANSISTORS 
 

LEARNING OBJECTIVES 

Upon completion of this chapter, you should be able to do the following: 

1. Define the term transistor and give a brief description of its construction and operation. 

2. Explain how the transistor can be used to amplify a signal. 

3. Name the four classes of amplifiers and give an explanation for each. 

4. List the three different transistor circuit configurations and explain their operation. 

5. Identify the different types of transistors by their symbology and alphanumerical designations. 

6. List the precautions to be taken when working with transistors and describe ways to test them. 

7. Explain the meaning of the expression "integrated circuits." 

8. Give a brief description on how integrated circuits are constructed and the advantages they offer 

over conventional transistor circuits. 

9. Name the two types of circuit boards. 

10. State the purpose and function of modular circuitry. 

 

INTRODUCTION TO TRANSISTORS 

The discovery of the first transistor in 1948 by a team of physicists at the Bell Telephone Laboratories 

sparked an interest in solid-state research that spread rapidly. The transistor, which began as a simple 

laboratory oddity, was rapidly developed into a semiconductor device of major importance. The transistor 

demonstrated for the first time in history that amplification in solids was possible. Before the transistor, 

amplification was achieved only with electron tubes. Transistors now perform numerous electronic tasks 

with new and improved transistor designs being continually put on the market. In many cases, transistors are 

more desirable than tubes because they are small, rugged, require no filament power, and operate at low 

voltages with comparatively high efficiency. The development of a family of transistors has even made 

possible the miniaturization of electronic circuits. Figure 2-1 shows a sample of the many different types of 

transistors you may encounter when working with electronic equipment. 
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Figure 2-1.—An assortment of different types of transistors. 

Transistors have infiltrated virtually every area of science and industry, from the family car to satellites. 

Even the military depends heavily on transistors. The ever increasing uses for transistors have created an 

urgent need for sound and basic information regarding their operation. 

From your study of the PN-junction diode in the preceding chapter, you now have the basic knowledge 

to grasp the principles of transistor operation. In this chapter you will first become acquainted with the basic 

types of transistors, their construction, and their theory of operation. You will also find out just how and why 

transistors amplify. Once this basic information is understood, transistor terminology, capabilities, 

limitations, and identification will be discussed. Last, we will talk about transistor maintenance, integrated 

circuits, circuit boards, and modular circuitry. 

 

TRANSISTOR FUNDAMENTALS 

The first solid-state device discussed was the two-element semiconductor diode. The next device on our 

list is even more unique. It not only has one more element than the diode but it can amplify as well. 

Semiconductor devices that have-three or more elements are called TRANSISTORS. The term transistor 

was derived from the words TRANSfer and resISTOR. This term was adopted because it best describes the 

operation of the transistor - the transfer of an input signal current from a low-resistance circuit to a high-

resistance circuit. Basically, the transistor is a solid-state device that amplifies by controlling the flow of 

current carriers through its semiconductor materials. 

There are many different types of transistors, but their basic theory of operation is all the same. As a 

matter of fact, the theory we will be using to explain the operation of a transistor is the same theory used 

earlier with the PN-junction diode except that now two such junctions are required to form the three 

elements of a transistor. The three elements of the two-junction transistor are (1) the EMITTER, which gives 

off, or emits," current carriers (electrons or holes); (2) the BASE, which controls the flow of current carriers; 

and (3) the COLLECTOR, which collects the current carriers. 

CLASSIFICATION 

Transistors are classified as either NPN or PNP according to the arrangement of their N and P 

materials. Their basic construction and chemical treatment is implied by their names, "NPN" or "PNP." That 
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is, an NPN transistor is formed by introducing a thin region of P-type material between two regions of 

N-type material. On the other hand, a PNP transistor is formed by introducing a thin region of N-type 

material between two regions of P-type material. Transistors constructed in this manner have two PN 

junctions, as shown in figure 2-2. One PN junction is between the emitter and the base; the other PN 

junction is between the collector and the base. The two junctions share one section of semiconductor 

material so that the transistor actually consists of three elements. 

 

 

Figure 2-2.—Transistor block diagrams. 

Since the majority and minority current carriers are different for N and P materials, it stands to reason 

that the internal operation of the NPN and PNP transistors will also be different. The theory of operation of 

the NPN and PNP transistors will be discussed separately in the next few paragraphs. Any additional 

information about the PN junction will be given as the theory of transistor operation is developed. 

To prepare you for the forthcoming information, the two basic types of transistors along with their 

circuit symbols are shown in figure 2-3. It should be noted that the two symbols are different. The horizontal 

line represents the base, the angular line with the arrow on it represents the emitter, and the other angular 

line represents the collector. The direction of the arrow on the emitter distinguishes the NPN from the PNP 

transistor. If the arrow points in, (Points iN) the transistor is a PNP. On the other hand if the arrow points 

out, the transistor is an NPN (Not Pointing iN). 
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Figure 2-3.—Transistor representations. 

Another point you should keep in mind is that the arrow always points in the direction of hole flow, or 

from the P to N sections, no matter whether the P section is the emitter or base. On the other hand, electron 

flow is always toward or against the arrow, just like in the junction diode. 

CONSTRUCTION 

The very first transistors were known as point-contact transistors. Their construction is similar to the 

construction of the point-contact diode covered in chapter 1. The difference, of course, is that the 

point-contact transistor has two P or N regions formed instead of one. Each of the two regions constitutes an 

electrode (element) of the transistor. One is named the emitter and the other is named the collector, as shown 

in figure 2-4, view A. 
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Figure 2-4.—Transistor constructions. 

Point-contact transistors are now practically obsolete. They have been replaced by junction transistors, 

which are superior to point-contact transistors in nearly all respects. The junction transistor generates less 

noise, handles more power, provides higher current and voltage gains, and can be mass-produced more 

cheaply than the point-contact transistor. Junction transistors are manufactured in much the same manner as 

the PN junction diode discussed earlier. However, when the PNP or NPN material is grown (view B), the 

impurity mixing process must be reversed twice to obtain the two junctions required in a transistor. 

Likewise, when the alloy-junction (view C) or the diffused-junction (view D) process is used, two junctions 

must also be created within the crystal. 

Although there are numerous ways to manufacture transistors, one of the most important parts of any 

manufacturing process is quality control. Without good quality control, many transistors would prove 

unreliable because the construction and processing of a transistor govern its thermal ratings, stability, and 

electrical characteristics. Even though there are many variations in the transistor manufacturing processes, 

certain structural techniques, which yield good reliability and long life, are common to all processes: (1) 

Wire leads are connected to each semiconductor electrode; (2) the crystal is specially mounted to protect it 

against mechanical damage; and (3) the unit is sealed to prevent harmful contamination of the crystal. 

Q1. What is the name given to the semiconductor device that has three or more elements? 

Q2. What electronic function made the transistor famous? 

Q3. In which direction does the arrow point on an NPN transistor? 

Q4. What was the name of the very first transistor? 

Q5. What is one of the most important parts of any transistor manufacturing process? 
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TRANSISTOR THEORY 

You should recall from an earlier discussion that a forward-biased PN junction is comparable to a low-

resistance circuit element because it passes a high current for a given voltage. In turn, a reverse-biased PN 

junction is comparable to a high-resistance circuit element. By using the Ohm's law formula for power 

(P = I
2
R) and assuming current is held constant, you can conclude that the power developed across a high 

resistance is greater than that developed across a low resistance. Thus, if a crystal were to contain two PN 

junctions (one forward-biased and the other reverse-biased), a low-power signal could be injected into the 

forward-biased junction and produce a high-power signal at the reverse-biased junction. In this manner, a 

power gain would be obtained across the crystal. This concept, which is merely an extension of the material 

covered in chapter 1, is the basic theory behind how the transistor amplifies. With this information fresh in 

your mind, let's proceed directly to the NPN transistor. 

NPN Transistor Operation 

Just as in the case of the PN junction diode, the N material comprising the two end sections of the NP N 

transistor contains a number of free electrons, while the center P section contains an excess number of holes. 

The action at each junction between these sections is the same as that previously described for the diode; 

that is, depletion regions develop and the junction barrier appears. To use the transistor as an amplifier, each 

of these junctions must be modified by some external bias voltage. For the transistor to function in this 

capacity, the first PN junction (emitter-base junction) is biased in the forward, or low-resistance, direction. 

At the same time the second PN junction (base-collector junction) is biased in the reverse, or high-

resistance, direction. A simple way to remember how to properly bias a transistor is to observe the NPN or 

PNP elements that make up the transistor. The letters of these elements indicate what polarity voltage to use 

for correct bias. For instance, notice the NPN transistor below: 

 

1. The emitter, which is the first letter in the NPN sequence, is connected to the negative side of the 

battery while the base, which is the second letter (NPN), is connected to the positive side. 

2. However, since the second PN junction is required to be reverse biased for proper transistor 

operation, the collector must be connected to an opposite polarity voltage (positive) than that 

indicated by its letter designation(NPN).  The voltage on the collector must also be more positive 

than the base, as shown below: 
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We now have a properly biased NPN transistor. 

In summary, the base of the NPN transistor must be positive with respect to the emitter, and the 

collector must be more positive than the base. 

NPN FORWARD-BIASED JUNCTION.�An important point to bring out at this time, which was 

not necessarily mentioned during the explanation of the diode, is the fact that the N material on one side of 

the forward-biased junction is more heavily doped than the P material. This results in more current being 

carried across the junction by the majority carrier electrons from the N material than the majority carrier 

holes from the P material. Therefore, conduction through the forward-biased junction, as shown in figure 

2-5, is mainly by majority carrier electrons from the N material (emitter). 
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Figure 2-5.—The forward-biased junction in an NPN transistor. 

With the emitter-to-base junction in the figure biased in the forward direction, electrons leave the 

negative terminal of the battery and enter the N material (emitter). Since electrons are majority current 

carriers in the N material, they pass easily through the emitter, cross over the junction, and combine with 

holes in the P material (base). For each electron that fills a hole in the P material, another electron will leave 

the P material (creating a new hole) and enter the positive terminal of the battery. 

NPN REVERSE-BIASED JUNCTION.�The second PN junction (base-to-collector), or reverse-

biased junction as it is called (fig. 2-6), blocks the majority current carriers from crossing the junction. 

However, there is a very small current, mentioned earlier, that does pass through this junction. This current 

is called minority current, or reverse current. As you recall, this current was produced by the electron-hole 

pairs. The minority carriers for the reverse-biased PN junction are the electrons in the P material and the 

holes in the N material. These minority carriers actually conduct the current for the reverse-biased junction 

when electrons from the P material enter the N material, and the holes from the N material enter the P 

material. However, the minority current electrons (as you will see later) play the most important part in the 

operation of the NPN transistor. 
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Figure 2-6.—The reverse-biased junction in an NPN transistor. 

At this point you may wonder why the second PN junction (base-to-collector) is not forward biased like 

the first PN junction (emitter-to-base). If both junctions were forward biased, the electrons would have a 

tendency to flow from each end section of the N P N transistor (emitter and collector) to the center P section 

(base). In essence, we would have two junction diodes possessing a common base, thus eliminating any 

amplification and defeating the purpose of the transistor. A word of caution is in order at this time. If you 

should mistakenly bias the second PN junction in the forward direction, the excessive current could develop 

enough heat to destroy the junctions, making the transistor useless. Therefore, be sure your bias voltage 

polarities are correct before making any electrical connections. 

NPN JUNCTION INTERACTION.�We are now ready to see what happens when we place the two 

junctions of the NPN transistor in operation at the same time. For a better understanding of just how the two 

junctions work together, refer to figure 2-7 during the discussion. 
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Figure 2-7.—NPN transistor operation. 

The bias batteries in this figure have been labeled V CC for the collector voltage supply, and VBB for the 

base voltage supply. Also notice the base supply battery is quite small, as indicated by the number of cells in 

the battery, usually 1 volt or less. However, the collector supply is generally much higher than the base 

supply, normally around 6 volts. As you will see later, this difference in supply voltages is necessary to have 

current flow from the emitter to the collector. 

As stated earlier, the current flow in the external circuit is always due to the movement of free 

electrons. Therefore, electrons flow from the negative terminals of the supply batteries to the N-type emitter. 

This combined movement of electrons is known as emitter current (IE). Since electrons are the majority 

carriers in the N material, they will move through the N material emitter to the emitter-base junction. With 

this junction forward biased, electrons continue on into the base region. Once the electrons are in the base, 

which is a P-type material, they become minority carriers. Some of the electrons that move into the base 

recombine with available holes. For each electron that recombines, another electron moves out through the 

base lead as base current IB (creating a new hole for eventual combination) and returns to the base supply 

battery V BB. The electrons that recombine are lost as far as the collector is concerned. Therefore, to make 

the transistor more efficient, the base region is made very thin and lightly doped. This reduces the 

opportunity for an electron to recombine with a hole and be lost. Thus, most of the electrons that move into 

the base region come under the influence of the large collector reverse bias. This bias acts as forward bias 

for the minority carriers (electrons) in the base and, as such, accelerates them through the base-collector 

junction and on into the collector region. Since the collector is made of an N-type material, the electrons that 

reach the collector again become majority current carriers. Once in the collector, the electrons move easily 

through the N material and return to the positive terminal of the collector supply battery VCC as collector 

current (IC). 
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To further improve on the efficiency of the transistor, the collector is made physically larger than the 

base for two reasons: (1) to increase the chance of collecting carriers that diffuse to the side as well as 

directly across the base region, and (2) to enable the collector to handle more heat without damage. 

In summary, total current flow in the NPN transistor is through the emitter lead. Therefore, in terms of 

percentage, IE is 100 percent. On the other hand, since the base is very thin and lightly doped, a smaller 

percentage of the total current (emitter current) will flow in the base circuit than in the collector circuit. 

Usually no more than 2 to 5 percent of the total current is base current (IB) while the remaining 95 to 98 

percent is collector current (IC). A very basic relationship exists between these two currents: 

IE = IB + I C 

In simple terms this means that the emitter current is separated into base and collector current. Since the 

amount of current leaving the emitter is solely a function of the emitter-base bias, and because the collector 

receives most of this current, a small change in emitter-base bias will have a far greater effect on the 

magnitude of collector current than it will have on base current. In conclusion, the relatively small emitter-

base bias controls the relatively large emitter-to-collector current. 

Q6. To properly bias an NPN transistor, what polarity voltage is applied to the collector, and what is its 
relationship to the base voltage? 

Q7. Why is conduction through the forward-biased junction of an NPN transistor primarily in one 
direction, namely from the emitter to base? 

Q8. In the NPN transistor, what section is made very thin compared with the other two sections? 

Q9. What percentage of current in an NPN transistor reaches the collector? 

PNP Transistor Operation 

The PNP transistor works essentially the same as the NPN transistor. However, since the emitter, base, 

and collector in the PNP transistor are made of materials that are different from those used in the NPN 

transistor, different current carriers flow in the PNP unit. The majority current carriers in the PNP transistor 

are holes. This is in contrast to the NPN transistor where the majority current carriers are electrons. To 

support this different type of current (hole flow), the bias batteries are reversed for the PNP transistor. A 

typical bias setup for the PNP transistor is shown in figure 2-8. Notice that the procedure used earlier to 

properly bias the NPN transistor also applies here to the PNP transistor. The first letter (P) in the PNP 

sequence indicates the polarity of the voltage required for the emitter (positive), and the second letter (N) 

indicates the polarity of the base voltage (negative). Since the base-collector junction is always reverse 

biased, then the opposite polarity voltage (negative) must be used for the collector. Thus, the base of the 

PNP transistor must be negative with respect to the emitter, and the collector must be more negative than the 

base. Remember, just as in the case of the NPN transistor, this difference in supply voltage is necessary to 

have current flow (hole flow in the case of the PNP transistor) from the emitter to the collector. Although 

hole flow is the predominant type of current flow in the PNP transistor, hole flow only takes place within the 

transistor itself, while electrons flow in the external circuit. However, it is the internal hole flow that leads to 

electron flow in the external wires connected to the transistor. 
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Figure 2-8.—A properly biased PNP transistor. 

PNP FORWARD-BIASED JUNCTION.�Now let us consider what happens when the emitter-base 

junction in figure 2-9 is forward biased. With the bias setup shown, the positive terminal of the battery 

repels the emitter holes toward the base, while the negative terminal drives the base electrons toward the 

emitter. When an emitter hole and a base electron meet, they combine. For each electron that combines with 

a hole, another electron leaves the negative terminal of the battery, and enters the base. At the same time, an 

electron leaves the emitter, creating a new hole, and enters the positive terminal of the battery. This 

movement of electrons into the base and out of the emitter constitutes base current flow (IB), and the path 

these electrons take is referred to as the emitter-base circuit. 
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Figure 2-9.—The forward-biased junction in a PNP transistor. 

PNP REVERSE-BIASED JUNCTION.�In the reverse-biased junction (fig. 2-10), the negative 

voltage on the collector and the positive voltage on the base block the majority current carriers from crossing 

the junction. However, this same negative collector voltage acts as forward bias for the minority current 

holes in the base, which cross the junction and enter the collector. The minority current electrons in the 

collector also sense forward bias-the positive base voltage-and move into the base. The holes in the collector 

are filled by electrons that flow from the negative terminal of the battery. At the same time the electrons 

leave the negative terminal of the battery, other electrons in the base break their covalent bonds and enter the 

positive terminal of the battery. Although there is only minority current flow in the reverse-biased junction, 

it is still very small because of the limited number of minority current carriers. 
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Figure 2-10.—The reverse-biased junction in a PNP transistor. 

PNP JUNCTION INTERACTION.�The interaction between the forward- and reverse-biased 

junctions in a PNP transistor is very similar to that in an NPN transistor, except that in the PNP transistor, 

the majority current carriers are holes. In the PNP transistor shown in figure 2-11, the positive voltage on the 

emitter repels the holes toward the base. Once in the base, the holes combine with base electrons. But again, 

remember that the base region is made very thin to prevent the recombination of holes with electrons. 

Therefore, well over 90 percent of the holes that enter the base become attracted to the large negative 

collector voltage and pass right through the base. However, for each electron and hole that combine in the 

base region, another electron leaves the negative terminal of the base battery (V BB) and enters the base as 

base current (IB). At the same time an electron leaves the negative terminal of the battery, another electron 

leaves the emitter as IE (creating a new hole) and enters the positive terminal of VBB. Meanwhile, in the 

collector circuit, electrons from the collector battery (VCC) enter the collector as Ic and combine with the 

excess holes from the base. For each hole that is neutralized in the collector by an electron, another electron 

leaves the emitter and starts its way back to the positive terminal of VCC. 
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Figure 2-11.—PNP transistor operation. 

Although current flow in the external circuit of the PNP transistor is opposite in direction to that of the 

NPN transistor, the majority carriers always flow from the emitter to the collector. This flow of majority 

carriers also results in the formation of two individual current loops within each transistor. One loop is the 

base-current path, and the other loop is the collector-current path. The combination of the current in both of 

these loops (IB  + IC) results in total transistor current (IE). The most important thing to remember about the 

two different types of transistors is that the emitter-base voltage of the PNP transistor has the same 

controlling effect on collector current as that of the NPN transistor. In simple terms, increasing the forward-

bias voltage of a transistor reduces the emitter-base junction barrier. This action allows more carriers to 

reach the collector, causing an increase in current flow from the emitter to the collector and through the 

external circuit. Conversely, a decrease in the forward-bias voltage reduces collector current. 

Q10. What are the majority current carriers in a PNP transistor? 

Q11. What is the relationship between the polarity of the voltage applied to the PNP transistor and that 
applied to the NPN transistor? 

Q12. What is the letter designation for base current? 

Q13. Name the two current loops in a transistor. 

 

THE BASIC TRANSISTOR AMPLIFIER 

In the preceding pages we explained the internal workings of the transistor and introduced new terms, 

such as emitter, base, and collector. Since you should be familiar by now with all of the new terms 
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mentioned earlier and with the internal operation of the transistor, we will move on to the basic transistor 

amplifier. 

To understand the overall operation of the transistor amplifier, you must only consider the current in 

and out of the transistor and through the various components in the circuit. Therefore, from this point on, 

only the schematic symbol for the transistor will be used in the illustrations, and rather than thinking about 

majority and minority carriers, we will now start thinking in terms of emitter, base, and collector current. 

Before going into the basic transistor amplifier, there are two terms you should be familiar with: 

AMPLIFICATION and AMPLIFIER. Amplification is the process of increasing the strength of a SIGNAL. 

A signal is just a general term used to refer to any particular current, voltage, or power in a circuit. An 

amplifier is the device that provides amplification (the increase in current, voltage, or power of a signal) 

without appreciably altering the original signal. 

Transistors are frequently used as amplifiers. Some transistor circuits are CURRENT amplifiers, with a 

small load resistance; other circuits are designed for VOLTAGE amplification and have a high load 

resistance; others amplify POWER. 

Now take a look at the NPN version of the basic transistor amplifier in figure 2-12 and let's see just how 

it works. 

So far in this discussion, a separate battery has been used to provide the necessary forward-bias voltage. 

Although a separate battery has been used in the past for convenience, it is not practical to use a battery for 

emitter-base bias. For instance, it would take a battery slightly over .2 volts to properly forward bias a 

germanium transistor, while a similar silicon transistor would require a voltage slightly over .6 volts. 

However, common batteries do not have such voltage values. Also, since bias voltages are quite critical and 

must be held within a few tenths of one volt, it is easier to work with bias currents flowing through resistors 

of high ohmic values than with batteries. 

By inserting one or more resistors in a circuit, different methods of biasing may be achieved and the 

emitter-base battery eliminated. In addition to eliminating the battery, some of these biasing methods 

compensate for slight variations in transistor characteristics and changes in transistor conduction resulting 

from temperature irregularities. Notice in figure 2-12 that the emitter-base battery has been eliminated and 

the bias resistor R B has been inserted between the collector and the base. Resistor RB provides the necessary 

forward bias for the emitter-base junction. Current flows in the emitter-base bias circuit from ground to the 

emitter, out the base lead, and through R B to V CC. Since the current in the base circuit is very small (a few 

hundred microamperes) and the forward resistance of the transistor is low, only a few tenths of a volt of 

positive bias will be felt on the base of the transistor. However, this is enough voltage on the base, along 

with ground on the emitter and the large positive voltage on the collector, to properly bias the transistor. 
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Figure 2-12.—The basic transistor amplifier. 

With Q1 properly biased, direct current flows continuously, with or without an input signal, throughout 

the entire circuit. The direct current flowing through the circuit develops more than just base bias; it also 

develops the collector voltage (VC) as it flows through Q1 and R L. Notice the collector voltage on the output 

graph. Since it is present in the circuit without an input signal, the output signal starts at the VC level and 

either increases or decreases. These dc voltages and currents that exist in the circuit before the application of 

a signal are known as QUIESCENT voltages and currents (the quiescent state of the circuit). 

Resistor RL, the collector load resistor, is placed in the circuit to keep the full effect of the collector 

supply voltage off the collector. This permits the collector voltage (VC) to change with an input signal, 

which in turn allows the transistor to amplify voltage. Without RL in the circuit, the voltage on the collector 

would always be equal to VCC. 

The coupling capacitor (CC) is another new addition to the transistor circuit. It is used to pass the ac 

input signal and block the dc voltage from the preceding circuit. This prevents dc in the circuitry on the left 

of the coupling capacitor from affecting the bias on Q1. The coupling capacitor also blocks the bias of Q1 

from reaching the input signal source. 

The input to the amplifier is a sine wave that varies a few millivolts above and below zero. It is 

introduced into the circuit by the coupling capacitor and is applied between the base and emitter. As the 

input signal goes positive, the voltage across the emitter-base junction becomes more positive. This in effect 

increases forward bias, which causes base current to increase at the same rate as that of the input sine wave. 

Emitter and collector currents also increase but much more than the base current. With an increase in 

collector current, more voltage is developed across R L. Since the voltage across RL and the voltage across 

Q1 (collector to emitter) must add up to VCC, an increase in voltage across RL results in an equal decrease in 
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voltage across Q1. Therefore, the output voltage from the amplifier, taken at the collector of Q1 with respect 

to the emitter, is a negative alternation of voltage that is larger than the input, but has the same sine wave 

characteristics. 

During the negative alternation of the input, the input signal opposes the forward bias. This action 

decreases base current, which results in a decrease in both emitter and collector currents. The decrease in 

current through R L decreases its voltage drop and causes the voltage across the transistor to rise along with 

the output voltage. Therefore, the output for the negative alternation of the input is a positive alternation of 

voltage that is larger than the input but has the same sine wave characteristics. 

By examining both input and output signals for one complete alternation of the input, we can see that 

the output of the amplifier is an exact reproduction of the input except for the reversal in polarity and the 

increased amplitude (a few millivolts as compared to a few volts). 

The PNP version of this amplifier is shown in the upper part of the figure. The primary difference 

between the NPN and PNP amplifier is the polarity of the source voltage. With a negative VCC, the PNP base 

voltage is slightly negative with respect to ground, which provides the necessary forward bias condition 

between the emitter and base. 

When the PNP input signal goes positive, it opposes the forward bias of the transistor. This action 

cancels some of the negative voltage across the emitter-base junction, which reduces the current through the 

transistor. Therefore, the voltage across the load resistor decreases, and the voltage across the transistor 

increases. Since VCC is negative, the voltage on the collector (VC) goes in a negative direction (as shown on 

the output graph) toward -VCC (for example, from -5 volts to -7 volts). Thus, the output is a negative 

alternation of voltage that varies at the same rate as the sine wave input, but it is opposite in polarity and has 

a much larger amplitude. 

During the negative alternation of the input signal, the transistor current increases because the input 

voltage aids the forward bias. Therefore, the voltage across RL increases, and consequently, the voltage 

across the transistor decreases or goes in a positive direction (for example: from −5 volts to −3 volts). This 

action results in a positive output voltage, which has the same characteristics as the input except that it has 

been amplified and the polarity is reversed. 

In summary, the input signals in the preceding circuits were amplified because the small change in base 

current caused a large change in collector current. And, by placing resistor RL in series with the collector, 

voltage amplification was achieved. 

Q14. What is the name of the device that provides an increase in current, voltage, or power of a signal 
without appreciably altering the original signal? 

Q15. Besides eliminating the emitter-base battery, what other advantages can different biasing methods 
offer? 

Q16. In the basic transistor amplifier discussed earlier, what is the relationship between the polarity of the 
input and output signals? 

Q17. What is the primary difference between the NPN and PNP amplifiers? 

TYPES OF BIAS 

One of the basic problems with transistor amplifiers is establishing and maintaining the proper values 

of quiescent current and voltage in the circuit. This is accomplished by selecting the proper circuit-biasing 

conditions and ensuring these conditions are maintained despite variations in ambient (surrounding) 
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temperature, which cause changes in amplification and even distortion (an unwanted change in a signal). 

Thus a need arises for a method to properly bias the transistor amplifier and at the same time stabilize its dc 

operating point (the no signal values of collector voltage and collector current). As mentioned earlier, 

various biasing methods can be used to accomplish both of these functions. Although there are numerous 

biasing methods, only three basic types will be considered. 

Base-Current Bias (Fixed Bias) 

The first biasing method, called BASE CURRENT BIAS or sometimes FIXED BIAS, was used in 

figure 2-12. As you recall, it consisted basically of a resistor (RB) connected between the collector supply 

voltage and the base. Unfortunately, this simple arrangement is quite thermally unstable. If the temperature 

of the transistor rises for any reason (due to a rise in ambient temperature or due to current flow through it), 

collector current will increase. This increase in current also causes the dc operating point, sometimes called 

the quiescent or static point, to move away from its desired position (level). This reaction to temperature is 

undesirable because it affects amplifier gain (the number of times of amplification) and could result in 

distortion, as you will see later in this discussion. 

Self-Bias 

A better method of biasing is obtained by inserting the bias resistor directly between the base and 

collector, as shown in figure 2-13. By tying the collector to the base in this manner, feedback voltage can be 

fed from the collector to the base to develop forward bias. This arrangement is called SELF-BIAS. Now, if 

an increase of temperature causes an increase in collector current, the collector voltage (VC) will fall because 

of the increase of voltage produced across the load resistor (RL). This drop in VC will be fed back to the base 

and will result in a decrease in the base current. The decrease in base current will oppose the original 

increase in collector current and tend to stabilize it. The exact opposite effect is produced when the collector 

current decreases. 

 

Figure 2-13.—A basic transistor amplifier with self-bias. 

Self-bias has two small drawbacks: (1) It is only partially effective and, therefore, is only used where 

moderate changes in ambient temperature are expected; (2) it reduces amplification since the signal on the 

collector also affects the base voltage. This is because the collector and base signals for this particular 

amplifier configuration are 180 degrees out of phase (opposite in polarity) and the part of the collector signal 

that is fed back to the base cancels some of the input signal. This process of returning a part of the output 

back to its input is known as DEGENERATION or NEGATIVE FEEDBACK. Sometimes degeneration is 
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desired to prevent amplitude distortion (an output signal that fails to follow the input exactly) and self-bias 

may be used for this purpose. 

Combination Bias 

A combination of fixed and self-bias can be used to improve stability and at the same time overcome 

some of the disadvantages of the other two biasing methods. One of the most widely used combination-bias 

systems is the voltage-divider type shown in figure 2-14. Fixed bias is provided in this circuit by the voltage-

divider network consisting of R1, R2, and the collector supply voltage (VCC). The dc current flowing through 

the voltage-divider network biases the base positive with respect to the emitter. Resistor R3, which is 

connected in series with the emitter, provides the emitter with self-bias. Should IE increase, the voltage drop 

across R3 would also increase, reducing VC. This reaction to an increase in IE by R3 is another form of 

degeneration, which results in less output from the amplifier. However, to provide long-term or dc thermal 

stability, and at the same time, allow minimal ac signal degeneration, the bypass capacitor (Cbp) is placed 

across R3. If Cbp is large enough, rapid signal variations will not change its charge materially and no 

degeneration of the signal will occur. 

 

Figure 2-14.—A basic transistor amplifier with combination bias. 

In summary, the fixed-bias resistors, R1 and R2, tend to keep the base bias constant while the emitter 

bias changes with emitter conduction. This action greatly improves thermal stability and at the same time 

maintains the correct operating point for the transistor. 

Q18. Which biasing method is the most unstable? 

Q19. What type of bias is used where only moderate changes in ambient temperature are expected? 

Q20. When is degeneration tolerable in an amplifier? 

Q21. What is the most widely used combination-bias system? 
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AMPLIFIER CLASSES OF OPERATION 

In the previous discussions, we assumed that for every portion of the input signal there was an output 

from the amplifier. This is not always the case with amplifiers. It may be desirable to have the transistor 

conducting for only a portion of the input signal. The portion of the input for which there is an output 

determines the class of operation of the amplifier. There are four classes of amplifier operations. They are 

class A, class AB, class B, and class C. 

Class A Amplifier Operation 

Class A amplifiers are biased so that variations in input signal polarities occur within the limits of 

CUTOFF and SATURATION. In a PNP transistor, for example, if the base becomes positive with respect to 

the emitter, holes will be repelled at the PN junction and no current can flow in the collector circuit. This 

condition is known as cutoff. Saturation occurs when the base becomes so negative with respect to the 

emitter that changes in the signal are not reflected in collector-current flow. 

Biasing an amplifier in this manner places the dc operating point between cutoff and saturation and 

allows collector current to flow during the complete cycle (360 degrees) of the input signal, thus providing 

an output which is a replica of the input. Figure 2-12 is an example of a class A amplifier. Although the 

output from this amplifier is 180 degrees out of phase with the input, the output current still flows for the 

complete duration of the input. 

The class A operated amplifier is used as an audio- and radio-frequency amplifier in radio, radar, and 

sound systems, just to mention a few examples. 

For a comparison of output signals for the different amplifier classes of operation, refer to figure 2-15 

during the following discussion. 

 

Figure 2-15.—A comparison of output signals for the different amplifier classes of operation. 
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Class AB Amplifier Operation 

Amplifiers designed for class AB operation are biased so that collector current is zero (cutoff) for a 

portion of one alternation of the input signal. This is accomplished by making the forward-bias voltage 

less than the peak value of the input signal. By doing this, the base-emitter junction will be reverse biased 

during one alternation for the amount of time that the input signal voltage opposes and exceeds the value 

of forward-bias voltage. Therefore, collector current will flow for more than 180 degrees but less than 360 

degrees of the input signal, as shown in figure 2-15 view B. As compared to the class A amplifier, the dc 

operating point for the class AB amplifier is closer to cutoff. 

The class AB operated amplifier is commonly used as a push-pull amplifier to overcome a side effect 

of class B operation called crossover distortion. 

Class B Amplifier Operation 

Amplifiers biased so that collector current is cut off during one-half of the input signal are classified 

class B. The dc operating point for this class of amplifier is set up so that base current is zero with no 

input signal. When a signal is applied, one half cycle will forward bias the base-emitter junction and IC 

will flow. The other half cycle will reverse bias the base-emitter junction and IC will be cut off. Thus, for 

class B operation, collector current will flow for approximately 180 degrees (half) of the input signal, as 

shown in figure 2-15 view C. 

The class B operated amplifier is used extensively for audio amplifiers that require high-power 

outputs. It is also used as the driver- and power-amplifier stages of transmitters. 

Class C Amplifier Operation 

In class C operation, collector current flows for less than one half cycle of the input signal, as shown 

in figure 2-15 view D. The class C operation is achieved by reverse biasing the emitter-base junction, 

which sets the dc operating point below cutoff and allows only the portion of the input signal that 

overcomes the reverse bias to cause collector current flow. 

The class C operated amplifier is used as a radio-frequency amplifier in transmitters. 

From the previous discussion, you can conclude that two primary items determine the class of 

operation of an amplifier � (1) the amount of bias and (2) the amplitude of the input signal. With a given 

input signal and bias level, you can change the operation of an amplifier from class A to class B just by 

removing forward bias. Also, a class A amplifier can be changed to class AB by increasing the input 

signal amplitude. However, if an input signal amplitude is increased to the point that the transistor goes 

into saturation and cutoff, it is then called an OVERDRIVEN amplifier. 

You should be familiar with two terms used in conjunction with amplifiers � FIDELITY and 

EFFICIENCY. Fidelity is the faithful reproduction of a signal. In other words, if the output of an 

amplifier is just like the input except in amplitude, the amplifier has a high degree of fidelity. The 

opposite of fidelity is a term we mentioned earlier � distortion. Therefore, a circuit that has high fidelity 

has low distortion. In conclusion, a class A amplifier has a high degree of fidelity. A class AB amplifier 

has less fidelity, and class B and class C amplifiers have low or "poor" fidelity. 

The efficiency of an amplifier refers to the ratio of output-signal power compared to the total input 

power. An amplifier has two input power sources: one from the signal, and one from the power supply. 

Since every device takes power to operate, an amplifier that operates for 360 degrees of the input signal 

uses more power than if operated for 180 degrees of the input signal. By using more power, an amplifier 

has less power available for the output signal; thus the efficiency of the amplifier is low. This is the case 
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with the class A amplifier. It operates for 360 degrees of the input signal and requires a relatively large 

input from the power supply. Even with no input signal, the class A amplifier still uses power from the 

power supply. Therefore, the output from the class A amplifier is relatively small compared to the total 

input power. This results in low efficiency, which is acceptable in class A amplifiers because they are 

used where efficiency is not as important as fidelity. 

Class AB amplifiers are biased so that collector current is cut off for a portion of one alternation of 

the input, which results in less total input power than the class A amplifier. This leads to better efficiency. 

Class B amplifiers are biased with little or no collector current at the dc operating point. With no 

input signal, there is little wasted power. Therefore, the efficiency of class B amplifiers is higher still. 

The efficiency of class C is the highest of the four classes of amplifier operations. 

Q22. What amplifier class of operation allows collector current to flow during the complete cycle of the 
input? 

Q23. What is the name of the term used to describe the condition in a transistor when the emitter-base 
junction has zero bias or is reverse biased and there is no collector current? 

Q24. What two primary items determine the class of operation of an amplifier? 

Q25. What amplifier class of operation is the most inefficient but has the least distortion? 

TRANSISTOR CONFIGURATIONS 

A transistor may be connected in any one of three basic configurations (fig. 2-16): common emitter 

(CE), common base (CB), and common collector (CC). The term common is used to denote the element 

that is common to both input and output circuits. Because the common element is often grounded, these 

configurations are frequently referred to as grounded emitter, grounded base, and grounded collector. 
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Figure 2-16.—Transistor configurations. 

Each configuration, as you will see later, has particular characteristics that make it suitable for 

specific applications. An easy way to identify a specific transistor configuration is to follow three simple 

steps: 

1. Identify the element (emitter, base, or collector) to which the input signal is applied. 

2. Identify the element (emitter, base, or collector) from which the output signal is taken. 

3. The remaining element is the common element, and gives the configuration its name. 

Therefore, by applying these three simple steps to the circuit in figure 2-12, we can conclude that this 

circuit is more than just a basic transistor amplifier. It is a common-emitter amplifier. 

Common Emitter 

The common-emitter configuration (CE) shown in figure 2-16 view A is the arrangement most 

frequently used in practical amplifier circuits, since it provides good voltage, current, and power gain. 

The common emitter also has a somewhat low input resistance (500 ohms-1500 ohms), because the input 

is applied to the forward-biased junction, and a moderately high output resistance (30 kilohms-50 kilohms 

or more), because the output is taken off the reverse-biased junction. Since the input signal is applied to 

the base-emitter circuit and the output is taken from the collector-emitter circuit, the emitter is the element 

common to both input and output. 
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Since you have already covered what you now know to be a common-emitter amplifier (fig. 2-12), 

let's take a few minutes and review its operation, using the PNP common-emitter configuration shown in 

figure 2-16 view A. 

When a transistor is connected in a common-emitter configuration, the input signal is injected 

between the base and emitter, which is a low resistance, low-current circuit. As the input signal swings 

positive, it also causes the base to swing positive with respect to the emitter. This action decreases 

forward bias which reduces collector current (IC) and increases collector voltage (making VC more 

negative). During the negative alternation of the input signal, the base is driven more negative with 

respect to the emitter. This increases forward bias and allows more current carriers to be released from the 

emitter, which results in an increase in collector current and a decrease in collector voltage (making VC 

less negative or swing in a positive direction). The collector current that flows through the high resistance 

reverse-biased junction also flows through a high resistance load (not shown), resulting in a high level of 

amplification. 

Since the input signal to the common emitter goes positive when the output goes negative, the two 

signals (input and output) are 180 degrees out of phase. The common-emitter circuit is the only 

configuration that provides a phase reversal. 

The common-emitter is the most popular of the three transistor configurations because it has the best 

combination of current and voltage gain. The term GAIN is used to describe the amplification capabilities 

of the amplifier. It is basically a ratio of output versus input. Each transistor configuration gives a 

different value of gain even though the same transistor is used. The transistor configuration used is a 

matter of design consideration. However, as a technician you will become interested in this output versus 

input ratio (gain) to determine whether or not the transistor is working properly in the circuit. 

The current gain in the common-emitter circuit is called BETA (β). Beta is the relationship of 

collector current (output current) to base current (input current). To calculate beta, use the following 

formula: 

 

(∆ is the Greek letter delta, it is used to indicate a small change) 

For example, if the input current (IB) in a common emitter changes from 75 uA to 100 uA and the 

output current (IC) changes from 1.5 mA to 2.6 mA, the current gain (β) will be 44. 

 

This simply means that a change in base current produces a change in collector current which is 44 

times as large. 

You may also see the term hfe used in place of β. The terms hfe and β are equivalent and may be used 

interchangeably. This is because "hfe" means: 
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h = hybrid (meaning mixture) 

f = forward current transfer ratio 

e = common emitter configuration 

The resistance gain of the common emitter can be found in a method similar to the one used for 

finding beta: 

 

Once the resistance gain is known, the voltage gain is easy to calculate since it is equal to the current 

gain (β) multiplied by the resistance gain (E = βR). And, the power gain is equal to the voltage gain 

multiplied by the current gain β (P = βE). 

Common Base 

The common-base configuration (CB) shown in figure 2-16, view B is mainly used for impedance 

matching, since it has a low input resistance (30 ohms-160 ohms) and a high output resistance (250 

kilohms-550 kilohms). However, two factors limit its usefulness in some circuit applications: (1) its low 

input resistance and (2) its current gain of less than 1. Since the CB configuration will give voltage 

amplification, there are some additional applications, which require both a low-input resistance and 

voltage amplification, that could use a circuit configuration of this type; for example, some microphone 

amplifiers. 

In the common-base configuration, the input signal is applied to the emitter, the output is taken from 

the collector, and the base is the element common to both input and output. Since the input is applied to 

the emitter, it causes the emitter-base junction to react in the same manner as it did in the common-emitter 

circuit. For example, an input that aids the bias will increase transistor current, and one that opposes the 

bias will decrease transistor current. 

Unlike the common-emitter circuit, the input and output signals in the common-base circuit are in 

phase. To illustrate this point, assume the input to the PNP version of the common-base circuit in figure 

2-16 view B is positive. The signal adds to the forward bias, since it is applied to the emitter, causing the 

collector current to increase. This increase in Ic results in a greater voltage drop across the load resistor 

RL (not shown), thus lowering the collector voltage V C. The collector voltage, in becoming less negative, 

is swinging in a positive direction, and is therefore in phase with the incoming positive signal. 

The current gain in the common-base circuit is calculated in a method similar to that of the common 

emitter except that the input current is I E not IB and the term ALPHA (α) is used in place of beta for gain. 

Alpha is the relationship of collector current (output current) to emitter current (input current). Alpha is 

calculated using the formula: 

 

For example, if the input current (IE) in a common base changes from 1 mA to 3 mA and the output 

current (I C) changes from 1 mA to 2.8 mA, the current gain (α) will be 0.90 or: 
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This is a current gain of less than 1. 

Since part of the emitter current flows into the base and does not appear as collector current, 

collector current will always be less than the emitter current that causes it. (Remember, IE  = IB + IC) 

Therefore, ALPHA is ALWAYS LESS THAN ONE FOR A COMMON-BASE CONFIGURATION. 

Another term for "α" is hf. These terms (and hf) are equivalent and may be used interchangeably. The 

meaning for the term hf is derived in the same manner as the term hfe mentioned earlier, except that the 

last letter "e" has been replaced with "b" to stand for common- base configuration. 

Many transistor manuals and data sheets only list transistor current gain characteristics in terms of β 

or hfe. To find alpha (α) when given beta (β), use the following formula to convert β to α for use with the 

common-base configuration: 

 

To calculate the other gains (voltage and power) in the common-base configuration when the current 

gain (α) is known, follow the procedures described earlier under the common-emitter section. 

Common Collector 

The common-collector configuration (CC) shown in figure 2-16 view C is used mostly for 

impedance matching. It is also used as a current driver, because of its substantial current gain. It is 

particularly useful in switching circuitry, since it has the ability to pass signals in either direction 

(bilateral operation). 

In the common-collector circuit, the input signal is applied to the base, the output is taken from the 

emitter, and the collector is the element common to both input and output. The common collector is 

equivalent to our old friend the electron-tube cathode follower. Both have high input and low output 

resistance. The input resistance for the common collector ranges from 2 kilohms to 500 kilohms, and the 

output resistance varies from 50 ohms to 1500 ohms. The current gain is higher than that in the common 

emitter, but it has a lower power gain than either the common base or common emitter. Like the common 

base, the output signal from the common collector is in phase with the input signal. The common 

collector is also referred to as an emitter-follower because the output developed on the emitter follows the 

input signal applied to the base. 

Transistor action in the common collector is similar to the operation explained for the common base, 

except that the current gain is not based on the emitter-to-collector current ratio, alpha (α). Instead, it is 

based on the emitter-to-base current ratio called GAMMA (γ), because the output is taken off the emitter. 

Since a small change in base current controls a large change in emitter current, it is still possible to obtain 

high current gain in the common collector. However, since the emitter current gain is offset by the low 

output resistance, the voltage gain is always less than 1 (unity), exactly as in the electron-tube cathode 

follower 

The common-collector current gain, gamma (γ), is defined as 
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and is related to collector-to-base current gain, beta (β), of the common-emitter circuit by the 

formula: 

 

Since a given transistor may be connected in any of three basic configurations, there is a definite 

relationship, as pointed out earlier, between alpha (α), beta (β), and gamma (γ). These relationships are 

listed again for your convenience: 

 

Take, for example, a transistor that is listed on a manufacturer's data sheet as having an alpha of 

0.90. We wish to use it in a common emitter configuration. This means we must find beta. The 

calculations are: 

 

Therefore, a change in base current in this transistor will produce a change in collector current that 

will be 9 times as large. 

If we wish to use this same transistor in a common collector, we can find gamma (γ) by: 

 

To summarize the properties of the three transistor configurations, a comparison chart is provided in 

table 2-1 for your convenience. 

 

Table 2-1.—Transistor Configuration Comparison Chart 

AMPLIFIER  

TYPE 

COMMON 

BASE 

COMMON 

EMITTER 

COMMON 

COLLECTOR 

INPUT/OUTPUT PHASE 

RELATIONSHIP 

0º 180º 0º 

VOLTAGE GAIN HIGH MEDIUM LOW 

CURRENT  GAIN LOW(!) MEDIUM(") HIGH(#) 

POWER GAIN LOW HIGH MEDIUM 

INPUT RESISTANCE LOW MEDIUM HIGH 

OUTPUT RESISTANCE HIGH MEDIUM LOW 
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Now that we have analyzed the basic transistor amplifier in terms of bias, class of operation, and 

circuit configuration, let's apply what has been covered to figure 2-12. A reproduction of figure 2-12 is 

shown below for your convenience. 

 

This illustration is not just the basic transistor amplifier shown earlier in figure 2-12 but a class A 

amplifier configured as a common emitter using fixed bias. From this, you should be able to conclude the 

following: 

• Because of its fixed bias, the amplifier is thermally unstable. 

• Because of its class A operation, the amplifier has low efficiency but good fidelity. 

• Because it is configured as a common emitter, the amplifier has good voltage, current, and power 

gain. 

In conclusion, the type of bias, class of operation, and circuit configuration are all clues to the 

function and possible application of the amplifier. 

Q26. What are the three transistor configurations? 

Q27. Which transistor configuration provides a phase reversal between the input and output signals? 

Q28. What is the input current in the common-emitter circuit? 

Q29. What is the current gain in a common-base circuit called? 

Q30. Which transistor configuration has a current gain of less than 1? 

Q31. What is the output current in the common-collector circuit? 

Q32. Which transistor configuration has the highest input resistance? 

Q33. What is the formula for GAMMA (γ)? 
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TRANSISTOR SPECIFICATIONS 

Transistors are available in a large variety of shapes and sizes, each with its own unique 

characteristics. The characteristics for each of these transistors are usually presented on 

SPECIFICATION SHEETS or they may be included in transistor manuals. Although many properties of 

a transistor could be specified on these sheets, manufacturers list only some of them. The specifications 

listed vary with different manufacturers, the type of transistor, and the application of the transistor. The 

specifications usually cover the following items. 

1. A general description of the transistor that includes the following information: 

a. The kind of transistor. This covers the material used, such as germanium or silicon; the type 

of transistor (NPN or PNP); and the construction of the transistor(whether alloy-junction, 

grown, or diffused  junction, etc.). 

b. Some of the common applications for the transistor, such as audio amplifier, oscillator, rf 

amplifier, etc. 

c. General sales features, such as size and packaging mechanical data). 

2. The "Absolute Maximum Ratings" of the transistor are the direct voltage and current values that 

if exceeded in operation may result in transistor failure. Maximum ratings usually include 

collector-to-base voltage, emitter-to-base voltage, collector current, emitter current, and collector 

power dissipation. 

3. The typical operating values of the transistor. These values are presented only as a guide. The 

values vary widely, are dependent upon operating voltages, and also upon which element is 

common in the circuit.  The values listed may include collector-emitter voltage, collector current, 

input resistance, load resistance, current-transfer ratio (another name for alpha or beta), and 

collector cutoff current, which is leakage current from collector to base when no emitter current 

is applied. Transistor characteristic curves may also be included in this section. A transistor 

characteristic curve is a graph plotting the relationship between currents and voltages in a circuit. 

More than one curve on a graph is called a "family of curves." 

4. Additional information for engineering-design purposes. 

So far, many letter symbols, abbreviations, and terms have been introduced, some frequently used 

and others only rarely used. For a complete list of all semiconductor letter symbols and terms, refer to 

EIMB series 000-0140, Section III. 

 

TRANSISTOR IDENTIFICATION 

Transistors can be identified by a Joint Army-Navy (JAN) designation printed directly on the case of 

the transistor. The marking scheme explained earlier for diodes is also used for transistor identification. 

The first number indicates the number of junctions. The letter "N" following the first number tells us that 

the component is a semiconductor. And, the 2- or 3-digit number following the N is the manufacturer's 

identification number. If the last number is followed by a letter, it indicates a later, improved version of 

the device. For example, a semiconductor designated as type 2N130A signifies a three-element transistor 

of semiconductor material that is an improved version of type 130: 
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2 N 130 A 

NUMBER OF JUNCTIONS 

(TRANSISTOR) 

SEMI-

CONDUCTOR 

IDENTIFICATION 

NUMBER 

FIRST 

MODIFICATION 

You may also find other markings on transistors that do not relate to the JAN marking system. These 

markings are manufacturers' identifications and may not conform to a standardized system. If in doubt, 

always replace a transistor with one having identical markings. To ensure that an identical replacement or 

a correct substitute is used, consult an equipment or transistor manual for specifications on the transistor. 

 

TRANSISTOR MAINTENANCE 

Transistors are very rugged and are expected to be relatively trouble free. Encapsulation and 

conformal coating techniques now in use promise extremely long life expectancies. In theory, a transistor 

should last indefinitely. However, if transistors are subjected to current overloads, the junctions will be 

damaged or even destroyed. In addition, the application of excessively high operating voltages can 

damage or destroy the junctions through arc-over or excessive reverse currents. One of the greatest 

dangers to the transistor is heat, which will cause excessive current flow and eventual destruction of the 

transistor. 

To determine if a transistor is good or bad, you can check it with an ohmmeter or a transistor tester. 

In many cases, you can substitute a transistor known to be good for one that is questionable and thus 

determine the condition of a suspected transistor. This method of testing is highly accurate and sometimes 

the quickest, but it should be used only after you make certain that there are no circuit defects that might 

damage the replacement transistor. If more than one defective transistor is present in the equipment where 

the trouble has been localized, this testing method becomes cumbersome, as several transistors may have 

to be replaced before the trouble is corrected. To determine which stages failed and which transistors are 

not defective, all the removed transistors must be tested. This test can be made by using a standard Navy 

ohmmeter, transistor tester, or by observing whether the equipment operates correctly as each of the 

removed transistors is reinserted into the equipment. A word of caution-indiscriminate substitution of 

transistors in critical circuits should be avoided. 

When transistors are soldered into equipment, substitution is not practicable; it is generally desirable 

to test these transistors in their circuits. 

Q34. List three items of information normally included in the general description section of a 
specification sheet for a transistor. 

Q35. What does the number "2" (before the letter "N") indicate in the JAN marking scheme? 

Q36. What is the greatest danger to a transistor? 

Q37. What method for checking transistors is cumbersome when more than one transistor is bad in a 
circuit? 

PRECAUTIONS 

Transistors, although generally more rugged mechanically than electron tubes, are susceptible to 

damage by electrical overloads, heat, humidity, and radiation. Damage of this nature often occurs during 

transistor servicing by applying the incorrect polarity voltage to the collector circuit or excessive voltage 

to the input circuit. Careless soldering techniques that overheat the transistor have also been known to 

cause considerable damage. One of the most frequent causes of damage to a transistor is the electrostatic 
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discharge from the human body when the device is handled. You may avoid such damage before starting 

repairs by discharging the static electricity from your body to the chassis containing the transistor. You 

can do this by simply touching the chassis. Thus, the electricity will be transferred from your body to the 

chassis before you handle the transistor. 

To prevent transistor damage and avoid electrical shock, you should observe the following 

precautions when you are working with transistorized equipment: 

1. Test equipment and soldering irons should be checked to make certain there is no leakage current 

from the power source. If leakage current is detected, isolation transformers should be used. 

2. Always connect a ground between test equipment and circuit before attempting to inject or 

monitor a signal. 

3. Ensure test voltages do not exceed maximum allowable voltage for circuit components and 

transistors. Also, never connect test equipment outputs directly to a transistor circuit. 

4. Ohmmeter ranges that require a current of more than one milliampere in the test circuit should not 

be used for testing transistors. 

5. Battery eliminators should not be used to furnish power for transistor equipment because they 

have poor voltage regulation and, possibly, high-ripple voltage. 

6. The heat applied to a transistor, when soldered connections are required, should be kept to a 

minimum by using a low-wattage soldering iron and heat shunts, such as long-nose pliers, on the 

transistor leads. 

7. When it becomes necessary to replace transistors, never pry transistors to loosen them from 

printed circuit boards. 

8. All circuits should be checked for defects before replacing a transistor. 

9. The power must be removed from the equipment before replacing a transistor. 

10. Using conventional test probes on equipment with closely spaced parts often causes accidental 

shorts between adjacent terminals. These shorts rarely cause damage to an electron tube but may 

ruin a transistor. To prevent these shorts, the probes can be covered with insulation, except for a 

very short length of the tips. 

LEAD IDENTIFICATION 

Transistor lead identification plays an important part in transistor maintenance; because, before a 

transistor can be tested or replaced, its leads or terminals must be identified. Since there is no standard 

method of identifying transistor leads, it is quite possible to mistake one lead for another. Therefore, when 

you are replacing a transistor, you should pay close attention to how the transistor is mounted, particularly 

to those transistors that are soldered in, so that you do not make a mistake when you are installing the new 

transistor. When you are testing or replacing a transistor, if you have any doubts about which lead is 

which, consult the equipment manual or a transistor manual that shows the specifications for the transistor 

being used. 

There are, however, some typical lead identification schemes that will be very helpful in transistor 

troubleshooting. These schemes are shown in figure 2-17. In the case of the oval-shaped transistor shown 

in view A, the collector lead is identified by a wide space between it and the base lead. The lead farthest 

from the collector, in line, is the emitter lead. When the leads are evenly spaced and in line, as shown in 
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view B, a colored dot, usually red, indicates the collector. If the transistor is round, as in view C, a red 

line indicates the collector, and the emitter lead is the shortest lead. In view D the leads are in a triangular 

arrangement that is offset from the center of the transistor. The lead opposite the blank quadrant in this 

scheme is the base lead. When viewed from the bottom, the collector is the first lead clockwise from the 

base. The leads in view E are arranged in the same manner as those is view D except that a tap is used to 

identify the leads. When viewed from the bottom in a clockwise direction, the first lead following the tab 

is the emitter, followed by the base and collector. 

 

Figure 2-17.—Transistor lead identification. 

In a conventional power transistor as shown in views F and G, the collector lead is usually connected 

to the mounting base. For further identification, the base lead in view F is covered with green sleeving. 

While the leads in view G are identified by viewing the transistor from the bottom in a clockwise 

direction (with mounting holes occupying 3 o'clock and 9 o'clock positions), the emitter lead will be 

either at the 5 o'clock or 11 o'clock position. The other lead is the base lead. 

TRANSISTOR TESTING 

There are several different ways of testing transistors. They can be tested while in the circuit, by the 

substitution method mentioned, or with a transistor tester or ohmmeter. 
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Transistor testers are nothing more than the solid-state equivalent of electron-tube testers (although 

they do not operate on the same principle). With most transistor testers, it is possible to test the transistor 

in or out of the circuit. 

There are four basic tests required for transistors in practical troubleshooting: gain, leakage, 

breakdown, and switching time. For maintenance and repair, however, a check of two or three parameters 

is usually sufficient to determine whether a transistor needs to be replaced. 

Since it is impractical to cover all the different types of transistor testers and since each tester comes 

with its own operator's manual, we will move on to something you will use more frequently for testing 

transistors-the ohmmeter. 

Testing Transistors with an Ohmmeter 

Two tests that can be done with an ohmmeter are gain, and junction resistance. Tests of a transistor's 

junction resistance will reveal leakage, shorts, and opens. 

TRANSISTOR GAIN TEST.�A basic transistor gain test can be made using an ohmmeter and a 

simple test circuit. The test circuit can be made with just a couple of resistors and a switch, as shown in 

figure 2-18. The principle behind the test lies in the fact that little or no current will flow in a transistor 

between emitter and collector until the emitter-base junction is forward biased. The only precaution you 

should observe is with the ohmmeter. Any internal battery may be used in the meter provided that it does 

not exceed the maximum collector-emitter breakdown voltage. 

 

 

Figure 2-18.—Testing a transistor's gain with an ohmmeter. 

With the switch in figure 2-18 in the open position as shown, no voltage is applied to the PNP 

transistor's base, and the emitter-base junction is not forward biased. Therefore, the ohmmeter should read 

a high resistance, as indicated on the meter. When the switch is closed, the emitter-base circuit is forward 

biased by the voltage across R1 and R2. Current now flows in the emitter-collector circuit, which causes a 

lower resistance reading on the ohmmeter. A 10-to-1 resistance ratio in this test between meter readings 

indicates a normal gain for an audio-frequency transistor. 

To test an NPN transistor using this circuit, simply reverse the ohmmeter leads and carry out the 

procedure described earlier. 



 

2-35 

TRANSISTOR JUNCTION RESISTANCE TEST.�An ohmmeter can be used to test a transistor 

for leakage (an undesirable flow of current) by measuring the base-emitter, base-collector, and collector-

emitter forward and reverse resistances. 

For simplicity, consider the transistor under test in each view of figure 2-19 (view A, view B and 

view C) as two diodes connected back to back. Therefore, each diode will have a low forward resistance 

and a high reverse resistance. By measuring these resistances with an ohmmeter as shown in the figure, 

you can determine if the transistor is leaking current through its junctions. When making these 

measurements, avoid using the R1 scale on the meter or a meter with a high internal battery voltage. 

Either of these conditions can damage a low-power transistor. 

 

 

Figure 2-19A.—Testing a transistor's leakage with an ohmmeter. COLLECTOR-TO-EMITTER TEST 

 

 

Figure 2-19B.—Testing a transistor's leakage with an ohmmeter. BASE-TO-COLLECTOR TEST 
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Figure 2-19C.—Testing a transistor's leakage with an ohmmeter. BASE-TO-EMITTER TEST 

Now consider the possible transistor problems that could exist if the indicated readings in figure 2-19 

are not obtained. A list of these problems is provided in table 2-2. 

 

Table 2-2.—Possible Transistor Problems from Ohmmeter Readings 

RESISTANCE READINGS PROBLEMS 

FORWARD REVERSE The transistor is: 

LOW (NOT SHORTED) LOW (NOT SHORTED) LEAKING 

LOW (SHORTED) LOW (SHORTED) SHORTED 

HIGH HIGH OPEN* 

*Except collector-to-emitter test. 

 

By now, you should recognize that the transistor used in figure 2-19 (view A, view B and view C) is 

a PNP transistor. If you wish to test an NPN transistor for leakage, the procedure is identical to that used 

for testing the PNP except the readings obtained are reversed. 

When testing transistors (PNP or NPN), you should remember that the actual resistance values 

depend on the ohmmeter scale and the battery voltage. Typical forward and reverse resistances are 

insignificant. The best indicator for showing whether a transistor is good or bad is the ratio of forward-to-

reverse resistance. If the transistor you are testing shows a ratio of at least 30 to 1, it is probably good. 

Many transistors show ratios of 100 to 1 or greater. 

Q38. What safety precaution must be taken before replacing a transistor? 

Q39. How is the collector lead identified on an oval-shaped transistor? 

Q40. What are two transistor tests that can be done with an ohmmeter? 

Q41. When you are testing the gain of an audio-frequency transistor with an ohmmeter, what is 
indicated by a 10-to-1 resistance ratio? 
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Q42. When you are using an ohmmeter to test a transistor for leakage, what is indicated by a low, but 
not shorted, reverse resistance reading? 

 

MICROELECTRONICS 

Up to now the various semiconductors, resistors, capacitors, etc., in our discussions have been 

considered as separately packaged components, called DISCRETE COMPONENTS. In this section we 

will introduce some of the more complex devices that contain complete circuits packaged as a single 

component. These devices are referred to as INTEGRATED CIRCUITS and the broad term used to 

describe the use of these devices to miniaturize electronic equipment is called MICROELECTRONICS. 

With the advent of the transistor and the demand by the military for smaller equipment, design 

engineers set out to miniaturize electronic equipment. In the beginning, their efforts were frustrated 

because most of the other components in a circuit such as resistors, capacitors, and coils were larger than 

the transistor. Soon these other circuit components were miniaturized, thereby pushing ahead the 

development of smaller electronic equipment. Along with miniature resistors, capacitors, and other circuit 

elements, the production of components that were actually smaller than the space required for the 

interconnecting wiring and cabling became possible. The next step in the research process was to 

eliminate these bulky wiring components. This was accomplished with the PRINTED CIRCUIT BOARD 

(PCB). 

A printed circuit board is a flat insulating surface upon which printed wiring and miniaturized 

components are connected in a predetermined design, and attached to a common base. Figure 2-20 (view 

A and view B) shows a typical printed circuit board. Notice that various components are connected to the 

board and the printed wiring is on the reverse side. With this technique, all interconnecting wiring in a 

piece of equipment, except for the highest power leads and cabling, is reduced to lines of conducting 

material (copper, silver, gold, etc.) deposited directly on the surface of an insulating "circuit board." Since 

printed circuit boards are readily adapted as plug-in units, the elimination of terminal boards, fittings and 

tie points, not to mention wires, results in a substantial reduction in the overall size of electronic 

equipment. 
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Figure 2-20A.—A typical printed circuit board (PCB). FRONT SIDE 

 

Figure 2-20B.—A typical printed circuit board (PCB). REVERSE SIDE 
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After the printed circuit boards were perfected, efforts to miniaturize electronic equipment were then 

shifted to assembly techniques, which led to MODULAR CIRCUITRY. In this technique, printed circuit 

boards are stacked and connected together to form a module. This increases the packaging density of 

circuit components and results in a considerable reduction in the size of electronic equipment. Since the 

module can be designed to perform any electronic function, it is also a very versatile unit. 

However, the drawback to this approach was that the modules required a considerable number of 

connections that took up too much space and increased costs. In addition, tests showed the reliability was 

adversely affected by the increase in the number of connections. 

A new technique was required to improve reliability and further increase packaging density. The 

solution was INTEGRATED CIRCUITS. 

An integrated circuit is a device that integrates (combines) both active components (transistors, 

diodes, etc.) and passive components (resistors, capacitors, etc.) of a complete electronic circuit in a 

single chip (a tiny slice or wafer of semiconductor crystal or insulator). 

Integrated circuits (ICs) have almost eliminated the use of individual electronic components 

(resistors, capacitors, transistors, etc.) as the building blocks of electronic circuits. Instead, tiny CHIPS 

have been developed whose functions are not that of a single part, but of dozens of transistors, resistors, 

capacitors, and other electronic elements, all interconnected to perform the task of a complex circuit. 

Often these comprise a number of complete conventional circuit stages, such as a multistage amplifier (in 

one extremely small component). These chips are frequently mounted on a printed circuit board, as shown 

in figure 2-21, which plugs into an electronic unit. 

 

Figure 2-21.—ICs on a printed circuit board. 

Integrated circuits have several advantages over conventional wired circuits of discrete components. 

These advantages include (1) a drastic reduction in size and weight, (2) a large increase in reliability, (3) 

lower cost, and (4) possible improvement in circuit performance. However, integrated circuits are 
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composed of parts so closely associated with one another that repair becomes almost impossible. In case 

of trouble, the entire circuit is replaced as a single component. 

Basically, there are two general classifications of integrated circuits: HYBRID and MONOLITHIC. 

In the monolithic integrated circuit, all elements (resistors, transistors, etc.) associated with the circuit are 

fabricated inseparably within a continuous piece of material (called the SUBSTRATE), usually silicon. 

The monolithic integrated circuit is made very much like a single transistor. While one part of the crystal 

is being doped to form a transistor, other parts of the crystal are being acted upon to form the associated 

resistors and capacitors. Thus, all the elements of the complete circuit are created in the crystal by the 

same processes and in the same time required to make a single transistor. This produces a considerable 

cost savings over the same circuit made with discrete components by lowering assembly costs. 

Hybrid integrated circuits are constructed somewhat differently from the monolithic devices. The 

PASSIVE components (resistors, capacitors) are deposited onto a substrate (foundation) made of glass, 

ceramic, or other insulating material. Then the ACTIVE components (diodes, transistors) are attached to 

the substrate and connected to the passive circuit components on the substrate using very fine (.001 inch) 

wire. The term hybrid refers to the fact that different processes are used to form the passive and active 

components of the device. 

Hybrid circuits are of two general types: (1) thin film and (2) thick film. "Thin" and "thick" film 

refer to the relative thickness of the deposited material used to form the resistors and other passive 

components. Thick film devices are capable of dissipating more power, but are somewhat more bulky. 

Integrated circuits are being used in an ever increasing variety of applications. Small size and weight 

and high reliability make them ideally suited for use in airborne equipment, missile systems, computers, 

spacecraft, and portable equipment. They are often easily recognized because of the unusual packages that 

contain the integrated circuit. A typical packaging sequence is shown in figure 2-22. These tiny packages 

protect and help dissipate heat generated in the device. One of these packages may contain one or several 

stages, often having several hundred components. Some of the most common package styles are shown in 

figure 2-23. 
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Figure 2-22.—A typical integrated circuit packaging sequence. 

 

 

Figure 2-23.—Common IC packaging styles. 

The preceding information was presented to give you a brief introduction into integrated circuits. If 

you wish to pursue this subject further, additional information is available in your ship's or station's 

library. 
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SUMMARY 

Now that you have completed this chapter, a short review of the more important points covered in 

the chapter will follow. This review should refresh your memory of transistors, their theory of operation, 

and how they are tested with an ohmmeter. 

A TRANSISTOR is a three or more element solid-state device that amplifies by controlling the flow 

of current carriers through its semiconductor materials. 

 

 

 

The THREE ELEMENTS OF A TRANSISTOR are (1) the EMITTER, which gives off current 

carriers, (2) the BASE, which controls the carriers, and (3) the COLLECTOR, which collects the carriers. 

 

 

The two BASIC TYPES OF TRANSISTORS are the NPN and PNP. The only difference in 

symbology between the two transistors is the direction of the arrow on the emitter. If the arrow points in, 

it is a PNP transistor and if it points outward, it is an NPN transistor. 
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The four TRANSISTOR MANUFACTURING PROCESSES are the (1) point contact, (2) grown 

or rate-grown junction, (3) alloy or fused junction, and (4) diffused junction. 
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The PROPER BIASING OF A TRANSISTOR enables the transistor to be used as an amplifier. To 

function in this capacity, the emitter-to-base junction of the transistor is forward biased, while the base-to-

collector junction is reverse biased. 

 

 

NPN TRANSISTOR OPERATION is basically the action of a relatively small emitter-base bias 

voltage controlling a relatively large emitter-to-collector current. 

 

 

PNP TRANSISTOR OPERATION is essentially the same as the NPN operation except the 

majority current carriers are holes and the bias batteries are reversed. 

 

 

AMPLIFICATION is the process of increasing the strength of a signal. 

An AMPLIFIER is the device that provides amplification without appreciably altering the original 

signal. 
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The BASIC TRANSISTOR AMPLIFIER amplifies by producing a large change in collector 

current for a small change in base current. This action results in voltage amplification because the load 

resistor placed in series with the collector reacts to these large changes in collector current which, in turn, 

results in large variations in the output voltage. 

 

 

 

The three types of BIAS used to properly bias a transistor are base-current bias (fixed bias), self-bias, 

and combination bias. 

Combination bias is the one most widely used because it improves circuit stability and at the same 

time overcomes some of the disadvantages of base-current bias and self-bias. 

 

THE CLASS OF AMPLIFIER OPERATION is determined by the portion of the input signal for 

which there is an output. 
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There are four classes of amplifier operations: class A, class AB, class B, and class C. 

 

 

CUTOFF occurs when the base-to-emitter bias prevents current from flowing in the emitter circuit. 

For example, in the PNP transistor, if the base becomes positive with respect to the emitter, holes are 

repelled at the emitter-base junction. This prevents current from flowing in the collector circuit. 

SATURATION occurs in a PNP transistor when the base becomes so negative, with respect to the 

emitter, that changes in the signal are not reflected in collector-current flow. 

CLASS A AMPLIFIERS are biased so that variations in input signal polarities occur within the 

limits of cutoff and saturation. Biasing an amplifier in this manner allows collector current to flow during 

the complete cycle (360 degrees) of the input signal, thus providing an output which is a replica of the 

input but 180 degrees out of phase. 

Class A operated amplifiers are used as audio- and radio-frequency amplifiers in radio, radar, and 

sound systems. 

 

 

CLASS AB AMPLIFIERS are biased so that collector current is zero (cutoff) for a portion of one 

alternation of the input signal. Therefore, collector current will flow for more than 180 degrees but less 

than 360 degrees of the input signal. The class AB amplifier is commonly used as a push-pull amplifier to 

overcome a side effect of class B operations. 
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CLASS B AMPLIFIERS are biased so that collector current is cut off during one-half of the input 

signal. Thus, for a class B operation, collector current will flow for approximately 180 degrees (half) of 

the input signal. 

The class B operated amplifier is used as an audio amplifier and sometimes as the driver- and power-

amplifier stage of transmitters. 

 

CLASS C AMPLIFIERS are biased so that collector current flows for less than one-half cycle of 

the input signal. 

The class C operated amplifier is used as a radio-frequency amplifier in transmitters. 

 

FIDELITY and EFFICIENCY are two terms used in conjunction with amplifiers. Fidelity is the 

faithful reproduction of a signal, while efficiency is the ratio of output signal power compared to the total 

input power. 

The class A amplifier has the highest degree of fidelity, but the class C amplifier has the highest 

efficiency. 

A TRANSISTOR CONFIGURATION is the particular way a transistor is connected in a circuit. A 

transistor may be connected in any one of three different configurations: common emitter (CE), common 

base (CB), and common collector (CC). 
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The COMMON-EMITTER CONFIGURATION (CE) is the most frequently used configuration 

in practical amplifier circuits, since it provides good voltage, current, and power gain. The input to the CE 

is applied to the base-emitter circuit and the output is taken from the collector-emitter circuit, making the 

emitter the element "common" to both input and output. The CE is set apart from the other configurations, 

because it is the only configuration that provides a phase reversal between input and output signals. 

 

 

The COMMON-BASE CONFIGURATION (CB) is mainly used for impedance matching, since it 

has a low input resistance and a high output resistance. It also has a current gain of less than 1. 

In the CB, the input is applied to the emitter, the output is taken from the collector, and the base is 

the element common to both input and output. 
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The COMMON-COLLECTOR CONFIGURATION (CC) is used as a current driver for 

impedance matching and is particularly useful in switching circuits. The CC is also referred to as an 

emitter-follower and is equivalent to the electron-tube cathode follower. Both have high input impedance 

and low output impedance. 

In the CC, the input is applied to the base, the output is taken from the emitter, and the collector is 

the element common to both input and output. 

 

GAIN is a term used to describe the amplification capabilities of an amplifier. It is basically a ratio 

of output to input. The current gain for the three transistor configurations (CB, CE, and CC) are ALPHA 

(α), BETA (β), and GAMMA (γ), respectively. 

 

The TRANSISTOR CONFIGURATION COMPARISON CHART gives a rundown of the 

different properties of the three configurations. 
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AMPLIFIER TYPE COMMON 

BASE 

COMMON 

EMITTER 

COMMON 

COLLECTOR 

INPUT/OUTPUT PHASE 

RELATIONSHIP 

0º 180º 0º 

VOLTAGE GAIN HIGH MEDIUM LOW 

CURRENT GAIN LOW(!) MEDIUM(") HIGH(#) 

POWER GAIN LOW HIGH MEDIUM 

INPUT RESISTANCE LOW MEDIUM HIGH 

OUTPUT RESISTANCE HIGH MEDIUM LOW 

 

TRANSISTOR CHARACTERISTICS are usually presented on specification sheets. These sheets 

usually cover the following items: 

1. The kind of transistor. 

2. The absolute maximum ratings of the transistor. 

3. The typical operating values of the transistor. 

4. Additional engineering/design information. 

TRANSISTORS ARE IDENTIFIED by a Joint Army-Navy (JAN) designation printed directly on 

the case of the transistor. If in doubt about a transistor's markings, always replace a transistor with one 

having identical markings, or consult an equipment or transistor manual to ensure that an identical 

replacement or substitute is used. 

 

2 N 130 A 

NUMBER OF JUNCTIONS 

(TRANSISTOR) 

SEMI-

CONDUCTOR 

IDENTIFICATION 

NUMBER 

FIRST 

MODIFICATION 

 

TESTING A TRANSISTOR to determine if it is good or bad can be done with an ohmmeter or 

transistor tester or by the substitution method. 

PRECAUTIONS should be taken when working with transistors since they are susceptible to 

damage by electrical overloads, heat, humidity, and radiation. 

TRANSISTOR LEAD IDENTIFICATION plays an important part in transistor maintenance 

because before a transistor can be tested or replaced, its leads must be identified. Since there is NO 

standard method of identifying transistor leads, check some typical lead identification schemes or a 

transistor manual before attempting to replace a transistor. 
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A TRANSISTOR GAIN TEST can be made using an ohmmeter and a simple test circuit. The 

principle behind this test lies in the fact that little or no current will flow in a transistor between emitter 

and collector until the emitter-base junction is forward biased. 

A 10-to-1 resistance ratio in the test between meter readings indicates normal gain. 

 

 

TRANSISTOR JUNCTION RESISTANCE TEST can also be made using an ohmmeter by 

measuring the base-emitter, base-collector, and collector-emitter forward and reverse resistances. 
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MICROELECTRONICS is a broad term used to describe the use of integrated circuits to 

miniaturize electronic equipment. 

A PRINTED CIRCUIT BOARD (PCB) is a flat, insulating surface upon which printed wiring and 

miniaturized components are connected in a predetermined design and attached to a common base. 

MODULAR CIRCUITRY is an assembly technique in which printed circuit boards are stacked and 

connected together to form a module. This technique increases the packaging density of circuit 

components and results in a considerable reduction in the size of electronic equipment. 

An INTEGRATED CIRCUIT is a device that integrates (combines) both active components 

(transistors, diodes, etc.) and passive components (resistors, capacitors, etc.) of a complete electronic 

circuit in a single chip. 

 

The two basic types of ICs are the HYBRID and the MONOLITHIC. 

In the MONOLITHIC IC, all elements (resistors, transistors, etc.) associated with the circuit are 

fabricated inseparably with a continuous piece of material (called the substrate). 
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In the HYBRID IC, the passive components (resistors, capacitors) are deposited onto a substrate 

(foundation) made of glass, ceramic, or other insulating material. Then the active components (diodes, 

transistors) are attached to the substrate and connected to the passive components using fine wire. 

 

ANSWERS TO QUESTIONS Q1. THROUGH Q42. 

A1. Transistor 

A2. Amplification. 

A3. Outward. 

A4. Point-contact. 

A5. Quality control. 

A6. Positive, more positive. 

A7. Because the N material on one side of the forward-biased junction is more heavily doped than the 
P-material. 

A8. The P or base section. 

A9. 98 percent. 

A10. Holes. 

A11. The polarity of voltage applied to the PNP transistor is opposite of that applied to the NPN 
transistor 

A12. I B. 

A13. The base current loop and the collector current loop. 

A14. Amplifier. 

A15. Compensation for slight variations in transistor characteristics and changes in transistor 
conduction because of temperature variations. 

A16. The signals are opposite in polarity or 180 degrees out of phase with each other. 

A17. The polarity of the source voltage. 

A18. Base current bias or fixed bias. 

A19. Self-bias. 

A20. When it is necessary to prevent amplitude distortion. 

A21. The voltage-divider type. 

A22. Class A. 

A23. Cutoff. 
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A24. The amount of bias and the amplitude of the input signal. 

A25. Class A. 

A26. Common emitter (CE), common base (CB), and common collector (CC). 

A27. Common emitter. 

A28. Base current (I B). 

A29. Alpha (α). 

A30. Common base. 

A31. IE. 

A32. Common collector. 

A33.  

   

A34. The kind of transistor, the transistor's common applications, and mechanical data. 

A35. The number of junctions in the device, which in this case indicates a transistor. 

A36. Heat. 

A37. The substitution method. 

A38. The power must be removed from the circuit. 

A39. By the wide space between the collector lead and the other two leads (emitter and base). 

A40. Gain and junction resistance. 

A41. Normal gain. 

A42. A leaking transistor 


